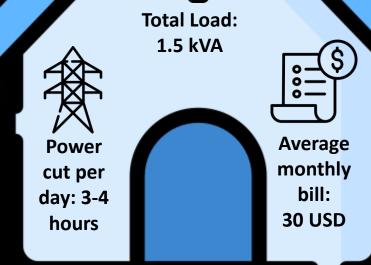


TEAM AVA How do we do it? Battery Application Landfill Pack **On-Grid REPURPOSE** Off-Grid **REFURBISH Application** Solar Landfill panels 罗

Why OPTIMUS?

HASSAN's Home

Solar UPS


MARKET PRICE

CAPEX (USD)

1500

1200

Upto 25% less CAPEX

24/7 reliable power supply

Decreased payback period

TEAM AVA **OPTIMUS Market** TARGET ENERGY **TARGET HOUSEHOLDS TARGET CUSTOMER Annual income:** 6000-7000 USD 1,1 GWp 0.9-1.2 million **Installed capacity** > 1.3kVA 2 \$57B >1.3kVA \$1.3B homes **OPTIMUS** target \$320B \$26B Indonesia Jakarta, East Java & West Java Market source: IESR-Residential rooftop potential, 2019

AFFLICTED

Approach to customer

UNAWARE

CUSTOMER CUSTOMER COMMUNITY PARTNERING & COLLABORATION AWARENESS CAMPAIGNS P1 P2 P2 SOCIAL MEDIA WEBSITE P3 PARTNERING & MEDIA COLLABORATION

TEAM AVA 1 million Homes EXPAND Consume 5-7 **OPTIMUS** million panels & 1-2 million batteries **Expand Geography YEAR** India • In-house refurbishing YEAR **500 Homes** 10 Improve on solution **YEAR** Aggressive sales Indonesia+India **First Prototype** YEAR Connect with 0.5 million Homes 3 refurbishers **MONTH Technical** requirement 12 App ready MONTH Islands, DG 18 consumers group **Expand Segment** Observe quality aspects Improve app MONTH and analytics 6 25 Homes **TEAM AVA BRIGHTER TOMORROW**

For a Brighter Tomorrow....

Future is HERE!

PLANET & PEOPLE

Energy INDEPENDENCE

LOCAL and GLOBAL

Index

Market related

Why Indonesia?

Competitors

Market sizing


Indonesia Policy

Present Indonesia DPV

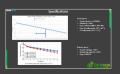
Customer profiling

Future trends

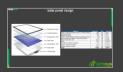
Global Outlook

Product economics

MRP based



Sales price based



Payback period

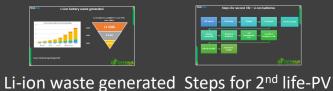
Technical

Future trends

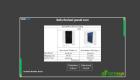
PV Panel design

Defects & classification

Testing for PV panels Testing for Li-ion batteries


Supply Chain

PV panel waste


Steps for 2nd life-Batteries

ste L

Shipment/landing costs

Data on used vs new panels

Potential partners

SE-OPTIMUS alignment

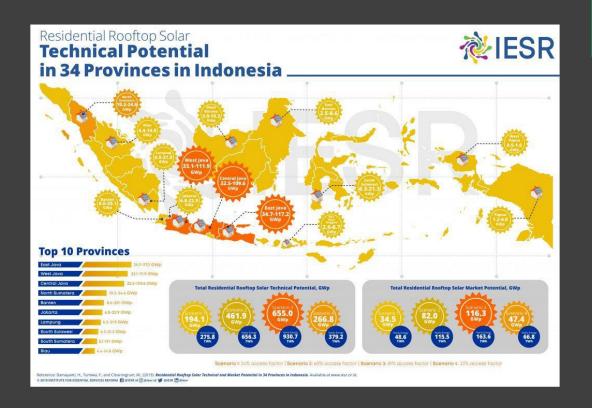
Resources required

SDG Goals alignment

Challenges

Why Indonesia?

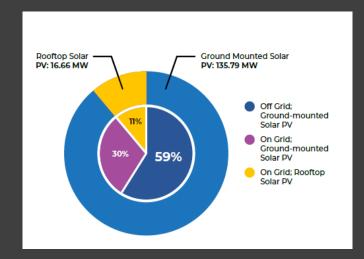
- Cost of Electricity
 - Indonesia:10-12 cents/unit; US (average): 10.7 cents/unit
 - India:7-8 cents/unit
- Energy Landscape in Indonesia
 - High dependency on Coal and Diesel power for electricity
 - Poor quality of grid, even in mainland
- Present Capex for solar rooftop in Indonesia
 - Higher than other developing countries- \$1100-1400/kW in Indonesia
 - In India it is around \$900-1100/kW
 - Higher %share of module cost(40-45%) to total cost
 - In US, %share of module cost is only 15% to total cost
- Topography
 - Archipelago-High T&D cost



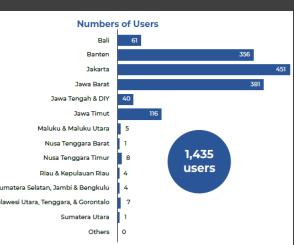
Why Jakarta, East Java & West Java?

- 3 provinces have both high technical and market potential
- High number of users like Hassan, with >1.3kVA installed capacity
- High number of homes with min 10 sq.m space for solar rooftop

Residential Rooftop solar PV	GWp	USD in billions	Million homes
Technical potential in Indonesia	266.8	320	66
Market potential Indonesia	47.49	57	26
Market potenttial in 3 Provinces	21.6	26	5
OPTIMUS Target in 3 Provinces	1.1	1.3	1



Present Indonesia DPV status


ROOFTOP SOLAR

- Solar capacity is 152MW (Nov. 2019)
 - 89% is ground-mounted and 11% rooftop
 - Rooftop solar is 16.66MW
 - CAGR for residential: >100%

• 90% of rooftops are residential users

Slight increase in rooftop solar PV deployment despite huge potential in the residential market

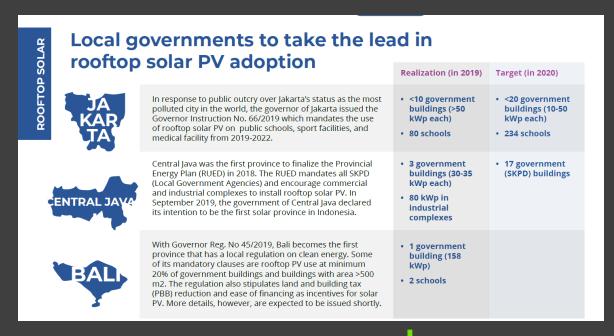
Customer Profile

- 3 segments and customer profiles
 - Urban -Middle class -Mainland
 - Remote areas/Islands-Villa Type Resorts-DG dependent
 - Rural Islands-Poor-No access to electricity

Eðmpetitors

Firm Name	Location	Туре	Component s	Expertise	Customer segment	Digital support	Finance
Inecosolar	Bali	Integrator	Sourcing	S,D,P, I & C	Residential	No digital service	Capex
Solar Power Indonesia	Bali	Integrator	Sourcing	S,D,P, I & C	Resort	No digital service	Capex
Solardex energy	Central java		Sourcing	S,D,P, I & C		No digital service	Capex/ Pay as you go
PT solarpanel Indonesia	Java	integrator	Sourcing	S,D,P, I & C	Residential/ resort	No digital service	Capex
Canopy Power	Bali	integrator	Sourcing	S,D,P, I & C	Resorts/ Commercial	Digital Monitoring	Capex
Sunterra	Jakarta	integrator	Sourcing	S,D,P, I & C	Resorts/Commerci al/residential	No digital service	Capex/ EMI option
Lein Power	Jakarta	integrator	Sourcing	S,D,P, I & C	Residential	Digital Monitoring-ABB	Capex
Solar Warrior	Jakarta/ Java	integrator	Sourcing	S,D,P, I & C	Resedential	Digital Monitoring	Capex/ EMI option
OPTIMUS	Jakarta, Java	integrator	Self/ Sourcing	S,D,P, I & C	Residential	Digital monitoring app	Сарех

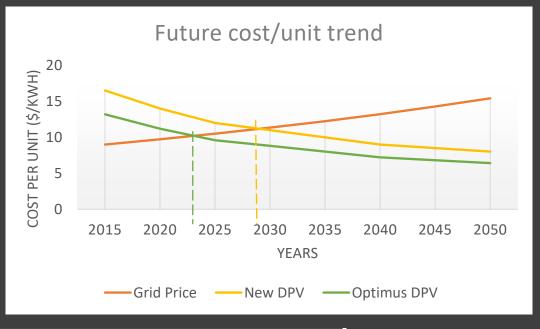
Survey, design, procure, install & commission

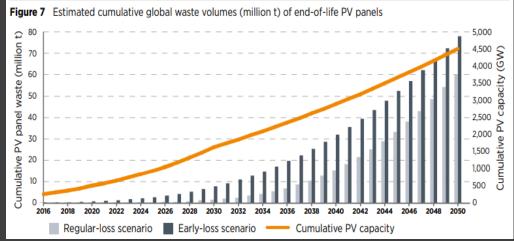

Indonesia Policy

- No subsidy on Capex for solar rooftop
- Net metering scheme for on-grid- 1:0.65
- Encouraging adoption for solar rooftops for Govt Sector buildings
- Green Building codes

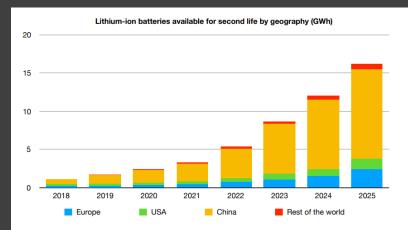
Green Building Codes: huge potential of cost savings, the codes are only adopted in a small number of cities

- Efforts to push for energy efficient buildings were first initiated by Jakarta through Governor Reg. No. 38/2012 on Green Building Code which focuses on large commercial and residential buildings for new and existing buildings. This was later followed by the Minister of Public Works and Public Housing (PUPR) Reg. No. 2/2015 on national guidance for green buildings which marked the first green building code at the national level.
- To date, there are three cities (Jakarta, Bandung, and Semarang) that have local green building codes while other three cities (Surabaya, Manado and Makassar) are still preparing their codes. By 2018, there were 339 new buildings in Jakarta certified as green buildings with cost saving may reach USD 90 million (ICED, 2019).
- The main barriers to the adoption of green buildings in Indonesia are the high investment costs, lack of funding scheme for the energy efficient building projects, and relatively low awareness of cost saving potential brought



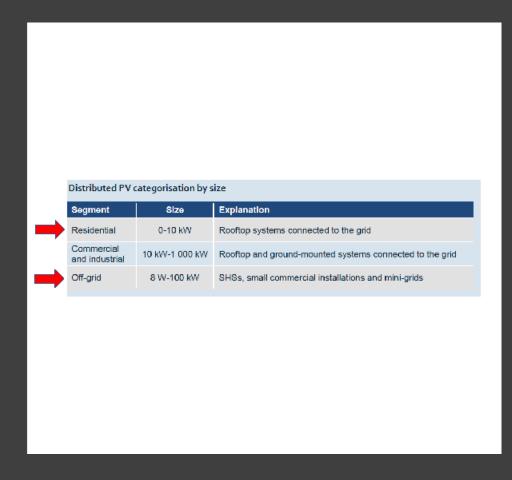

Future trends

Cost dynamics


Source: PLN, 2016

Source: IRENA_IEAPVPS, 2016

Source: Circular energy storage,2020



Global DPV outlook

Global Distributed Solar Rooftop Market

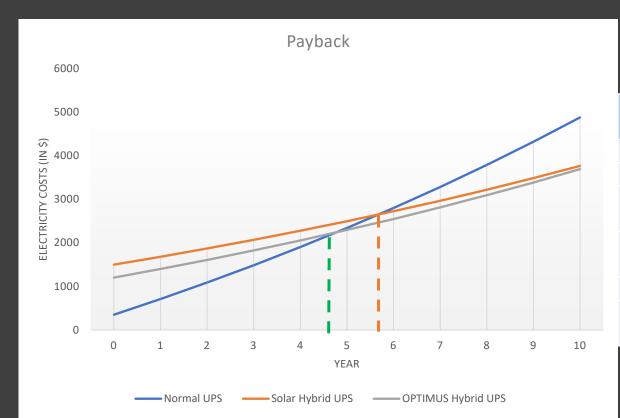
- Residential
- Commercial & Industries
- Off-grid market

OPTIMUS economics-Based on MRP

Market Vs OPTIMUS (MRP of system components)				
Draduct Type	Market	OPTIMUS	%diff	
Product Type	Total cost	Total cost	%uiii	
On grid-2kW				
Total cost	1810.0	1474.0	19%	
Off grid - 2kW				
Total cost	2947.0	2257.0	23%	
Solar UPS				
Total cost	1482.0	1186.0	20%	

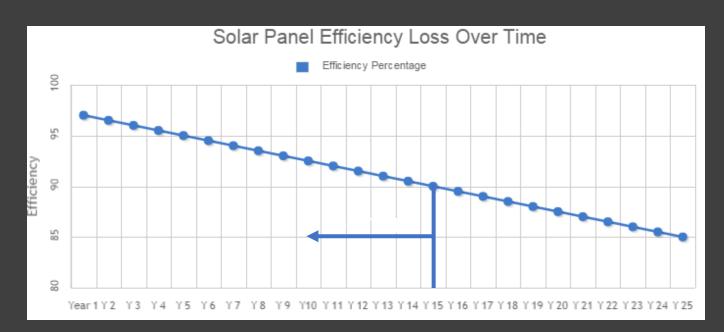
OPTIMUS economics-Integrator margins

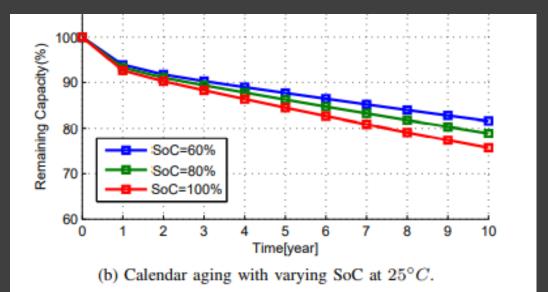
2kW On-grid	N			
Components of System	MRP (USD)	Discount from OEM	Cost for Integrator (USD)	Integrator Margin %
PV panel	840	15%	714	
Schneider Inverter	467	15%	397	
BoS and installation cost	500	10%	450	
Total cost	1807		1561	
Margin	193		269	15%
Selling Price	2000	9%	1830	
2kW On-grid	OI	PTIMUS Economic		
Components of System	MRP (USD)	Discount from OEM	Cost for Integrator (USD)	Integrator Margin %
PV panel	504	12.5%	441	
Schneider Inverter	467	20%	373	
BoS and installation cost	500	12.5%	437.5	
Total cost	1471		1252	
Margin	129		212	14.5%
Selling Price	1600	9%	1464	


Schneider pull through products:

- Inverter
- DC MCB
- AC MCB
- SPD
- Fuse
- Final Distribution boards

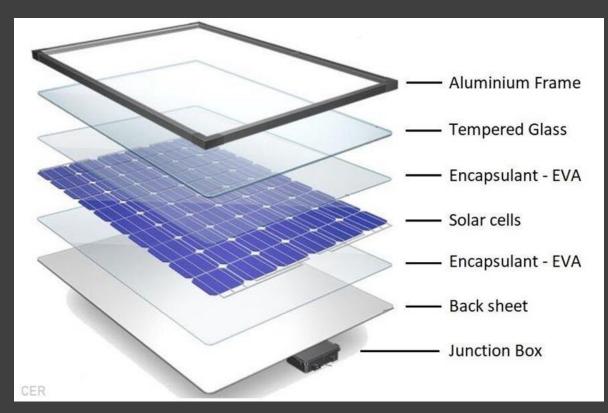
Hassan's Options & Payback


Features	Normal UPS	Solar Hybrid UPS	OPTIMUS UPS	OPTIMUS Advantage
Saves Electricity	No	Yes	Yes	
Battery charging	Grid	Grid+ Solar	Grid+ Solar	
Battery Type	Lead Acid	Lead Acid	Li-ion	Fast-charging cycle and zero maintenance
Battery Replacement	5 years	5 years	10 years	
Capex	350	1500	1200	20% low capex
Power saved/day	0 units	upto 4 units	upto 3.5 units	Refurbished with Min. 90% efficiency


80% of IESR's market survey respondents, expected a payback period of <7 years

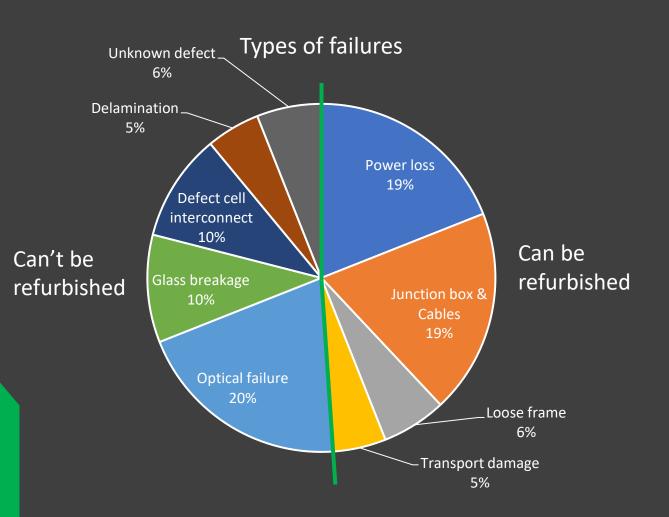
Specifications

Panel specs:


- Output power: >=250Wp
- Efficiency: >90%
- Type: Polycrystalline, thin-film
- Size: 60-cell panels: (39" x 65"),
 72-cell panels: (39" x 77")

Battery specs:

- Output voltage: 12.8V
- Remaining capacity: >80%
- Type: LiFePO4


Solar panel design

Material	Quantity	Unit	(wt/wt)
Glass, containing antimony (0.01-1 %/kg of glass)	700	kg	70 %
Aluminium frame	180	kg	18 %
Copper connector	10	kg	1 %
Polymer-based adhesive (EVA) encapsulation layer	51	kg	5.1 %
Back-sheet layer (based on polyvinyl fluoride)	15	kg	1.5 %
Silicon metal solar cell	36.5	kg	3.56 %
Silver	0.53	kg	0.053 %
Aluminium, internal conductor	5.3	kg	0.53 %
Copper, internal conductor	1.14	kg	1.14 %
Various metal (tin, lead)	0.53	kg	0.053 %
Total	1 000	kg	100 %

Type of defects and Classification?

Classification of damaged panels

- **1. Infant failures** defined as occurring up to four years after installation (average two years);
- **2. Midlife failures** defined as occurring about five to eleven years after installation;
- **3. Wear-out failures** defined as occurring about 12 years after installation until the assumed end-of life at 30 years.

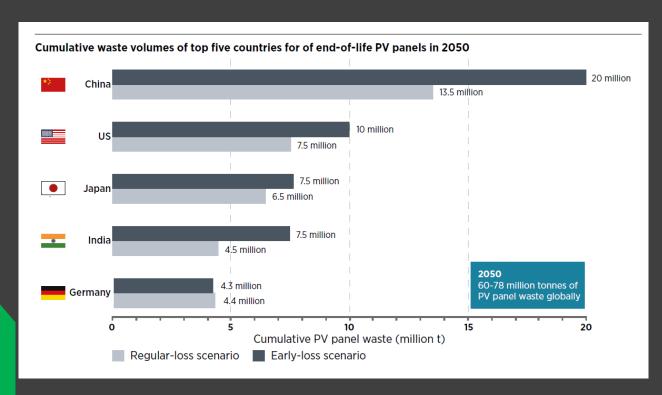
**Source: IEA-PVPS (2014a)

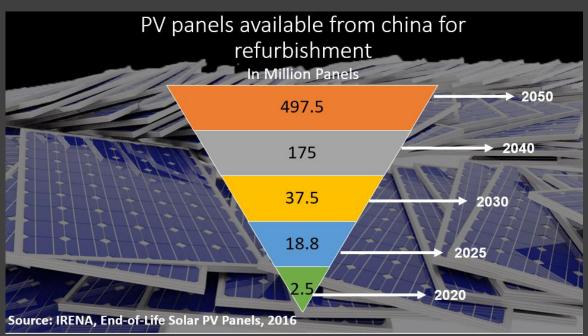
^{*}According to Fabtech, 50% of used or damaged panels can be given a second life

Tests on solar panels

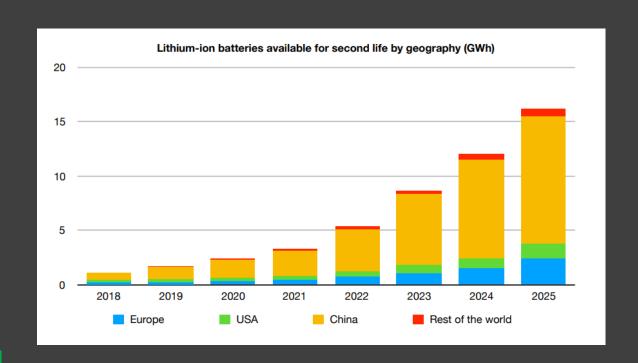
Tests	Band required	Method
Hotspots check -	Tol > 75%	thermography
Bubble formation	To be worked out	NIR cameras
Shading or faded cells	>25% lower yield	Yield check of single array
Diode check	Leakage current <	Reverse bias
Flash test	Ref PV module > 90%	Flash spectrum test
Flash Test – Temperature dependency	Ref PV module > 90%	Flash spectrum test
Micro cracks	Allowance to be worked out	NIR cameras
IV curve check – dark and Night	> 10% loss in efficiency	

Tests on Li-ion batteries


Inspection/Test Categories	Type of Inspections/Tests	Influence on Safety	Risk Impact 1
	Swelling of modules or cells	Medium	Medium/Low
	Corrosion of connectors	Medium/Low	Low
Visual	Intrusion of water and dust	High	Medium
	Loose cables and connections	Medium	Medium/Low
	Production date is available	Low	Not Applicable (N/A
	Internal resistance	Low	High/Medium
	Measured discharge capacity	Low	High
Electrical and Mechanical	Insulation resistance	High	Medium
	Potential equalisation	Medium	Medium/Low
	State of Charge (SOC) range as per datasheet	High	High
Battery Management System (BMS)	Remaining useful capacity	Low	High
	Direct Current (DC) resistance	Low	High/Medium
	On board State of Health (SOH)	Low	High



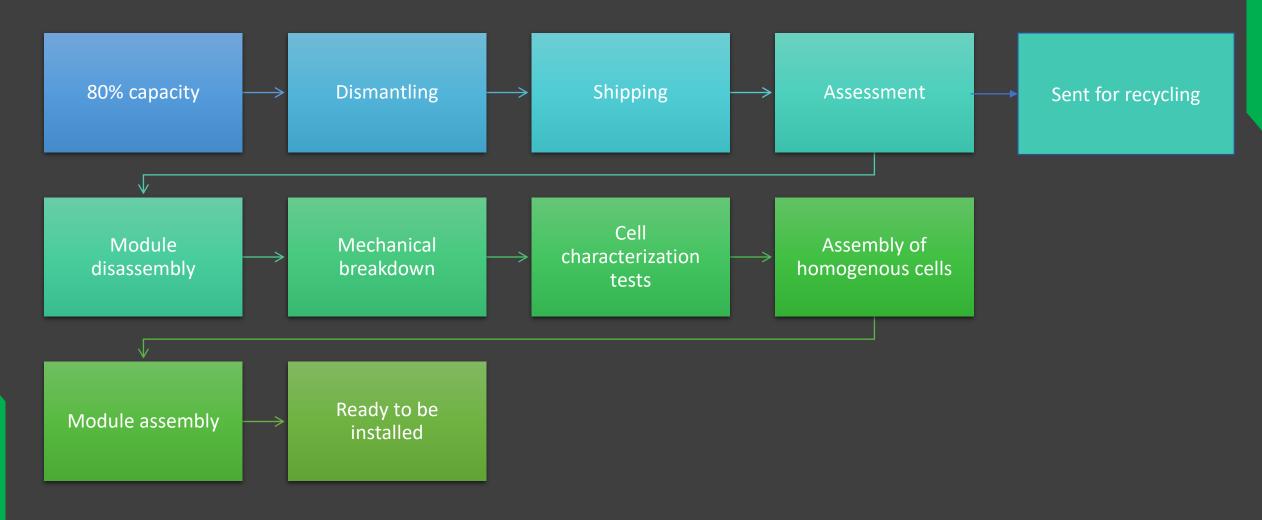
PV panels waste generated



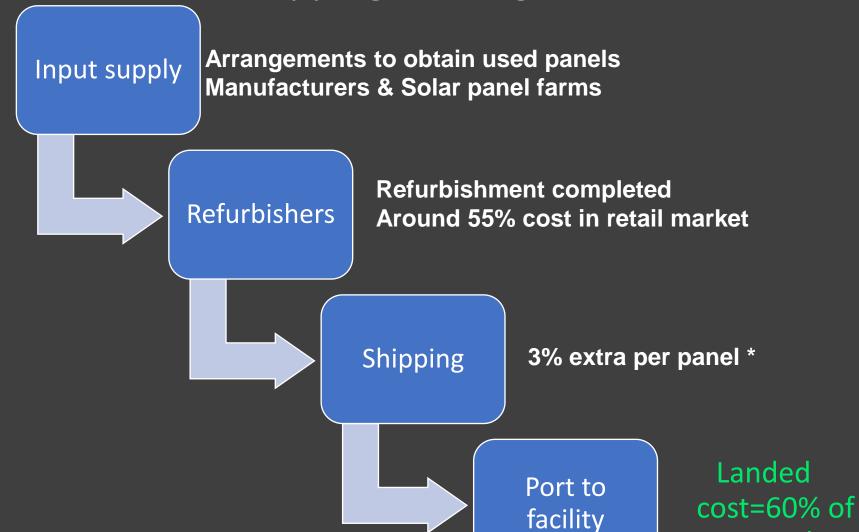
Source: IRENA_IEAPVPS, 2016

Li-ion battery waste generated

Source: Circular Energy Storage, 2020



Steps for second life - PV panels



Steps for second life – Li-ion batteries

Shipping/landing cost

2% extra per panel *

new panel cost

* Reference – Malaysia to India Copper shipping

Refurbished panel cost

Refurbished Panel Costing				
	1kW			
	ALL PRODUCTS \$130.00 Mission Solar 335W MSE335BBBSO6J	ALL PRODUCTS \$58.00 SanTan Solar T Series 250W Snail Trails		
	New Panel 330Wp x 3	Refurbished 250 Wp x 4		
Panel Price	\$390.00	\$232.00		
Shipping cost	\$9.00	\$12.00		
Landed cost	\$399.00	\$244.00		
	Difference	61%		

\$/Wp (New)	\$/Wp (Used)
0.35-0.4	0.2-0.25

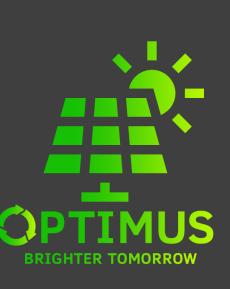
Source: Santan Solar

Potential partners

Companies	Category	Location	Remarks
Fable: Solar Solutions	PV panel refurbisher/recycler	Arizona, USA	Refurbished 600,000 panels over the last two years
RINOVASOL°	PV panel refurbisher/recycler	Weiden, Germany	Refurbished & recycled 1 million panels
@ fortum	Battery refurbisher	Espoo, Finland	EV autorickshaws in India
LOHŮM	Battery manufacturer & refurbisher	India	Partnered with MG Motors for end-of-life batteries
ENERGYBIN	Refurbished marketplace	Minnesota, USA	Community of 1000 solar companies for equipment resale
SECONDSOL THE PHOTOVOLTAIC MARKETPLACE	Refurbished marketplace	Meiningen, Germany	Online marketplace for used PV products and services
Santan	Refurbished marketplace	Arizona, USA	Online marketplace for used solar products

How SE benefits from OPTIMUS?

Pull-through products


Market penetration

Brand recognition

Digital energy services

Complementing existing SE ventures

80 Services

Mission-Vision-Goa

Enabling access to clean electricity to all

Circular economy business model

Improving on UN SDG

What resources are required?

- Support in developing relations with local suppliers, distribution partners, SE Ecoxperts
- Guidance on supply chain
- Digital expertise for developing Save+ app
- Networking with existing SE Ventures like Clipsal solar, Dash energy,
 Sense
- Technical expertise in testing, validation and certification

SUSTAINABLE GEALS

17 GOALS TO TRANSFORM OUR WORLD

Challenges

Supplier

- Identifying refurbishers in China
- Locating endof-life products

Input

- Regulations for shipping of refurbished goods
- Ensuring quality parameters for products

Process

- Government policy changes
- Compatibility of refurbished devices

Output

 Technology shift leading to sudden price drop of new products

Customer

Acceptability of refurbished products

